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ASYMPTOTIC BIAS FOR QUASI-MAXIMUM-LIKELIHOOD 
ESTIMATORS IN CONDITIONAL HETEROSKEDASTICITY 

MODELS 

BY WHITNEY K. NEWEY AND DOUGLAS G. STEIGERWALD 

Virtually all applications of time-varying conditional variance models use a quasi- 
maximum-likelihood estimator (QMLE). Consistency of a QMLE requires an identifica- 
tion condition that the quasi-log-likelihood have a unique maximum at the true condi- 
tional mean and relative scale parameters. We show that the identification condition holds 
for a non-Gaussian QMLE if the conditional mean is identically zero or if a symmetry 
condition is satisfied. Without symmetry, an additional parameter, for the location of the 
innovation density, must be added for identification. We calculate the efficiency loss from 
adding such a parameter under symmetry, when the parameter is not needed. We also 
show that there is no efficiency loss for the conditional variance parameters of a GARCH 
process. 

KEYWORDS: Conditional heteroskedasticity, consistency, quasi-maximum-likelihood. 

1. INTRODUCTION 

VIRTUALLY ALL EMPIRICAL STUDIES that assume a time-varying conditional 
variance, termed conditional heteroskedasticity (CH), also use a quasi- 
maximum-likelihood estimator (QMLE). If the likelihood is assumed to be 
Gaussian, the QMLE is known to be consistent under correct specification of 
both the conditional mean and the conditional variance.1 If the likelihood is 
assumed to be non-Gaussian, as has become increasingly common in applied 
work, less is known about the consistency of a QMLE.2 We present conditions 
for the expected conditional log-likelihood to be maximized at the true condi- 
tional mean and relative scale parameters, which is a crucial condition for 
consistency of a QMLE, and study asymptotic efficiency of a QMLE. 

We focus on maximization of the expected log-likelihood at the true parame- 
ter value because this is the essential identification condition for consistency. 
We show that if both the assumed innovation density and the true innovation 
density are unimodal and symmetric around zero (hereafter termed the symme- 
try condition), then the expected conditional log-likelihood is maximized at the 

1Bollerslev and Wooldridge (1992) show' consistency for the Gaussian QMLE for a wide range of 
CH models but require that the unconditional variance be finite. Lumsdaine (1991), Lee (1991), and 
Lee and Hansen (1991) show consistency for the Gaussian QMLE for the GARCH(1, 1) model 
without requiring that the unconditional variance be finite. 

2Several recent studies use non-Gaussian likelihoods and find that a non-Gaussian likelihood is 
needed to account for the large number of outliers in the variable under study. For example, 
Bollerslev (1987) uses a t distribution to model exchange rates and stock returns, Baillie and 
Bollerslev (1989) use both t and exponential-power distributions to model exchange rates, Hsieh 
(1989) uses several other distributions to model exchange rates, and Nelson (1991) uses the 
exponential-power distribution to model stock prices. 
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true conditional mean and relative scale parameters, so that the identification 
condition is satisfied. We also show that if one additional parameter is included, 
the identification condition for consistency is satisfied even if the symmetry 
condition does not hold. The additional parameter is a location parameter for 
the innovation density, and is also interpretable as a constant parameter in the 
heteroskedasticity-corrected equation. Finally, we show that if the conditional 
mean is identically zero, then neither the symmetry condition nor an additional 
parameter are needed to establish that the identification condition is satisfied. 

Evidence of asymmetry is commonly found in studies of financial variables. 
Hsieh (1988) studies the statistical properties of daily exchange rates and finds 
statistically significant negative skewness for each of the five exchange rates that 
he studies. French, Schwert, and Stambaugh (1987) study the relation between 
the mean and variance of monthly stock returns and find significant skewness for 
each of the stock returns that they study. 

The addition of a location parameter makes a QMLE robust to asymmetry, 
but may lead to an efficiency loss if the true innovation density is really 
symmetric. We derive an expression for the increase in the asymptotic variance 
of a QMLE from the additional location parameter under symmetry. We also 
show that if the information matrix is block diagonal between the parameters of 
the conditional mean and the parameters of the conditional variance, then there 
is no efficiency loss for a QMLE of the conditional variance parameters. For 
example, a QMLE for the conditional variance parameters in a GARCH model 
constructed under the assumption that the innovation has a t density, suffers no 
efficiency loss from the additional location parameter. 

To understand why identification differs for a Gaussian and a non-Gaussian 
QMLE, we focus on location and scale parameters. For a density fy(y) the 
natural location parameter ,u and scale parameter oa are those that maximize 
E[ - ln oa + ln fy((y - p)/o-)]. If fy is a Gaussian density, then L is the mean of 
Y and oa is the standard deviation of Y. For this reason, if the conditional mean 
and conditional variance are correctly specified, and if all the parameters of the 
conditional mean and conditional variance are identified, then the identification 
condition for consistency is satisfied for a Gaussian QMLE. If fy is not a 
Gaussian density, then the mean and variance are not the natural location and 
scale parameters. As a result, correct specification of the conditional mean and 
conditional variance is not sufficient to ensure that the identification condition 
for consistency is satisfied. To illustrate, for a double exponential density, where 
fy(y) = exp( - Iy)/2, the natural location parameter is the median rather than 
the mean. In general, different densities have different natural location and 
scale parameters. Thus for a non-Gaussian QMLE it is important to focus on a 
model where there are interesting components that are invariant to location and 
scale. One such model, which we study below, is a location and scale shift of 
independent and identically distributed innovations. 

To describe the models we consider, suppose that the data consist of observa- 
tions zt = (Yt, X)', t = 1, .. ., T, where the period-t variable of interest Yt is a 
function of period-t regressors xt. Let '=(Zt- ,Zt-2'...) and let ft(y) and 
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h,(y) denote functions of y and , where dependence on Y is suppressed for 
notational convenience. Also, let ut be the period-t innovation that is identically 
distributed and independent of Yt, and let a be the scale parameter for the 
density of ut. One way to describe many CH models that are estimated is 

(1.1) y, =f(yo) + o-0h,(y0)u,. 

Throughout, true values of parameters are indicated by subscript 0. For exam- 
ple, a first-order autoregressive model with conditional variance that depends 
linearly on the lagged squared residual (termed an AR(1)-ARCH(1)), has the 
form of (1.1) with y = (,l, P32, 4)) and 

ft(y) = 31 + 2Yt-1l 

ht(y) = [1 + (Yt1 - 131- I2Yt-2)1] 

An AR(1)-ARCH(1) model illustrates a feature that is implicit in (1.1), which is 
parameterization in terms of relative scale. The parameter 4) in the equation for 
ht(y) is the relative scale parameter of the conditional variance; that is, 4 is the 
ratio of the slope parameter in the conditional variance to the constant parame- 
ter in the conditional variance. If the conditional variance is 81 + 82(Yt-1 

-1 /82Yt-2)2, then 4 = 82/ 81 
Many CH models of the form in (1.1) are estimated by specifying a family of 

density functions for the innovation ut, denoted g(u, 7j) where 7q is a vector of 
shape parameters. (Throughout, we treat -q as a vector of parameters that are 
estimated). For example, a common specification is to assume that g(u, 71) is the 
t density, with -r indexing the degrees of freedom. Given an assumed value of g, 
the QMLE is the value of 0 = (y', u<')' that maximizes LT(6) = T- 1ET= 1lt(O) 
where lt(0), the period-t conditional log-likelihood of Yt given Y, is 

(1.2) It(6) = -ln o-- ln ht(y) + ln g([ht(Qy)o 1[yt -ft(y)],q). 

Equation (1.1) nests models used by: (i) Bollerslev (1987), in which ht(y) is a 
generalized autoregressive CH (GARCH) specification and g is a t density; (ii) 
Baillie and Bollerslev (1989), in which ht(y) is a GARCH specification and g is 
either t or exponential power; and (iii) Hsieh (1989), in which ht(y) is either a 
GARCH or exponential-GARCH specification and g is either t, exponential 
power, Gaussian-Poisson mixture, or Gaussian-log-Gaussian mixture. The class 
of models given by (1.1) also nests models in which the conditional variance is 
included as a regressor, as in the ARCH-M specification of Engle, Lilien, and 
Robins (1987). 

As discussed below, if ft(yo) = 0 the identification condition for consistency is 
satisfied for a QMLE of y from maximizing LT(6). If ft(y0) + 0, then the 
identification condition is satisfied if ut is symmetrically distributed around zero 
and if the assumed density, g(u, ), is symmetric around zero (an even function). 
If the symmetry condition does not hold, the identification condition for consis- 
tency is satisfied by adding a parameter for the location of the distribution of ut. 
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The additional parameter is introduced by modifying (1.1) as 

(1.3) Yt = f,(yo) + h,(yo )(a0 + co U), 

where a0 is the location of the innovation distribution.3 Adding the parameter 
ao has the effect of including h,(yo) among the regressors in (1.1). Returning to 
the AR(1)-ARCH(1) specification, inclusion of the additional parameter yields 

Yt = P801 + 302Yt-1 + 1 + (Yt- - 1301 - 102 Yt-2) ] (ao + oout). 

Adding the parameter ao is distinct from adding the conditional variance as a 
regressor, as is done in the ARCH-M specification. Consider adding the param- 
eter a0 to an AR(1)-ARCH(1)-M specification 

Yt = 1301 + 1302Yt- 1 + f303ht 

+ [ + 4O(Yt-1 - f3o0 - P02Yt-2 - /3o3ht_) ](ao + oout). 

The parameter 1303 enters both the conditional mean and conditional variance 
while, as the example makes clear, the additional parameter a0 enters the 
conditional mean but does not enter the conditional variance. 

With the parameter a included, the QMLE of 0 = (y', a, ur, aq')' is obtained 
by maximizing LT( 0) with 

(1.4) It(0) = -ln v- ln ht(y) + ln g([oht(y)IV1[yt -ft(y) - aht(y)], 71). 

The identification condition for consistency for a QMLE for y constructed from 
(1.4), denoted ', is satisfied even if the symmetry condition does not hold. For 
example, if g is a t density with 71 degrees of freedom, then ' is consistent even 
if ut is not symmetrically distributed around zero. 

To provide intuition for the result, consider the case in which g is symmetric 
and non-Gaussian. Recall that our goal is to consistently estimate the parame- 
ters of the conditional mean and the relative scale parameters of the conditional 
variance. As noted in the introduction, if g is not Gaussian, then the mean is 
generally not the natural location parameter of the assumed density, so correct 
specification of the conditional mean is not sufficient for consistent estimation 
of the conditional mean parameters. The identification problem stems from the 
fact that the conditional mean is not the natural location parameter of the 
assumed density. If the true density is symmetric, then the mean, median, and 
mode coincide, so that there is no discrepancy between the conditional mean 
and the natural location parameter for g. If the true density is asymmetric, 
however, the discrepancy between the conditional mean and the natural location 
parameter for g results in a failure to identify the parameters of the conditional 
mean. The additional parameter a in (1.4) accounts for the discrepancy between 

3An alternative way to introduce the additional parameter is to retain (1.1) and to include the 
location parameter for the innovation density in ij. 
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the conditional mean and the natural location parameter for each possible 
non-Gaussian QMLE. Note that the problem arises independently of the 
magnitude of the natural location parameter. Even if the location of the true 
innovation density is zero, that is if E[u,] = 0 and ao = 0 in (1.3), which implies 
that f,(-yo) is the conditional mean, the additional parameter is needed to 
account for the discrepancy between the conditional mean and the natural 
location parameter for g. 

As (1.3) makes clear, the presence of a constant in f,(-yo) does not account for 
a nonzero location parameter for ut. In (1.3), h,(-yo) remains proportional to the 
conditional standard deviation of Yt, preserving the CH structure of (1.1), but 
the conditional location of Yt is ft(-yo) + aoht(-yo), where the additional term 
aoht(-yo) is time varying.4 The inclusion of a constant cannot capture the 
presence of the time-varying term. 

To test the restriction a = 0 that is typically imposed when constructing a 
QMLE, a simple score test of the restriction that a = 0 can be based on the 
approach in Wooldridge (1990) that allows for misspecification. The resulting 
statistic provides a simple way of testing whether the additional parameter a is 
needed to ensure that a QMLE is consistent. 

The previous discussion focuses on consistent estimation of y. In many 
instances, such as testing for integration in a GARCH model, the scale or 
location parameters are also parameters of interest. Although a QMLE of the 
scale and location parameters is generally inconsistent, there are simple consis- 
tent estimators of location and scale given a consistent estimate of y. To 
estimate the scale or location parameters corresponding to a particular density 
g, form ut = (yt -ft(?))/ht(') and then maximize 

n 

L(aC,(J) = E ln {g([u^t-a a /, N)/v}. 
t= 1 

For example, if g is a standard normal density, the resulting a^ and &^ are the 
mean and standard deviation, respectively, of ut. 

2. IDENTIFICATION 

We focus on conditions for the expected log-likelihood to have a unique 
maximum at the true parameter value. In each case the expected log-likelihood 
is L(O) = E[lt(6)], so the conclusion of our results is that L(0) is maximized at 
Yoy The first result is for the case in which the additional location parameter 
does not need to be included; that is, either the symmetry condition holds or 
ft(^yo)= 0. We make the following four assumptions. 

4To retain interpretation of ft(yo) as the conditional mean of Yt, which may be important 
because the conditional mean is easily linked to expected returns, one must assume that a0 + 
o-oE[ut] = 0 in (1.3). 
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ASSUMPTION 2.1: E[Ilt(6)|] < 00 for all y E F, rj (4f, and a > 0. 

The sets F and X are feasible sets for the parameters ry and -r respectively. 

ASSUMPTION 2.2: The function h t(yo) > 0, and if y 0 yo then either ht(y)/ht( yo) 
is not constant or ft(y) 0 ft(yo). 

Assumption 2.2 is an identification condition for -y, which is the natural 
extension of identification conditions for regression models to a CH model. The 
condition that ht(y)/ht(-y0) is not constant means that ht(-y) and ht(-yo) are not 
permitted to be constant scale multiples of each other, so a constant scale 
parameter is excluded from ht(-y). 

ASSUMPTION 2.3: The innovation ut is symmetrically distributed around zero with 
unimodal density k(u) satisfying k(u1) < k(u2) for Iu l 2 I?U 21 For each rj, g(u, r) 
is symmetric around zero and g(u1,q) <g(u2vq) for lu1l > IU21. 

Assumption 2.3 imposes symmetry and unimodality on the true innovation 
density, k(u), and on the assumed innovation density g(u, r). Assumption 2.3 
also requires that g(u, rq) be strictly decreasing as u moves away from zero. 
Many densities satisfy Assumption 2.3, including the t density. 

ASSUMPTION 2.4: The function Q(o, r) = - ln o + E[ln g(o0u t/(J, )] has a 
unique maximum at some -a and r- over a > 0 and -r (X. 

Assumption 2.4 is a generic identification condition for the scale and shape 
parameters of the density g. Although it is difficult to specify more primitive 
conditions for Assumption 2.4, Newey (1986) provides insight. If the true 
innovation density is a member of the assumed parametric family, then Assump- 
tion 2.4 follows if the true innovation density is a one-to-one function of the 
parameters c- and rj (that is, by identification of the parameters (o-, -q) for the 
true innovation density). If the true innovation density is not a member of the 
assumed parametric family, then, for most innovation densities, Assumption 2.4 
follows from identification of the parameters (o-, -) for the true innovation 
density. 

The first result shows that L(0) is uniquely maximized at yo under either 
symmetry or ft(-yo) = 0 and the other conditions given above. 

THEOREM 1: If Assumptions' 2.1, 2.2, and 2.4 are satisfied and either Assump- 
tion 2.3 is satisfied or ft(yo) = 0, then for lt(0) from (1.2), the expected log- 
likelihood L(O) = E[ltf()] has a unique maximum at some 0 with -y = yo. 

PROOF: See Appendix B. 

If the location parameter a is added to the model, as in (1.3), it is important 
to strengthen slightly the identification condition of Assumption 2.2. The follow- 
ing assumption does this. 
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ASSUMPTION 2.5: The function h,(yo) > 0, and if y 0 yo then either h,(y)/h,(y0) 
or [ft(y) -f,(y0)]/h,(y0) is not constant. 

The requirement that [ft(-y) - f,(y0)]/h,(y0) is not constant if y 0 y0 implies 
that one cannot have an additive constant parameter in ft(y) if h,(yo) is 
constant. 

The next assumption is a different version of the identification condition of 
Assumption 2.4 that explicitly includes a location parameter for the innovation. 
Including a location parameter for the innovation was not needed in the 
previous case, because symmetry and unimodality automatically lead to the 
expected log-likelihood being maximized at ao= 0. 

ASSUMPTION 2.6: The function Q(a, a, = - ln oa + E[ln g((ao0ut + a)/u, 7)] 
has a unique maximum in (a, a, 

With the new assumptions we obtain the following result for the case where 
the symmetry condition does not hold. 

THEOREM 2: If Assumptions 2.1, 2.5, and 2.6 are satisfied, then for lt(6) from 
(1.4), the expected log-likelihood L(6) = E[lt(6)] has a unique maximum at some 0 
with y = yo. 

PROOF: See Appendix B. 

Theorem 2 shows that inclusion of the location parameter a ensures that the 
identification condition for consistency of the QMLE ' is satisfied even if the 
symmetry condition does not hold. It is also of interest to know if the converse 
of Theorem 2 holds, that is, whether e-xclusion of the location parameter for the 
innovation density implies that a QMLE is inconsistent. We show that the 
converse of Theorem 2 does hold if E[ht(yo)-ldf,(yo)/dy] 0, in the sense that 
for each sufficiently regular quasi-likelihood there is a distribution where the 
first order conditions for maximization at -yo are not satisfied. We describe this 
result later, because it is convenient to first analyze efficiency of a QMLE. 

3. ASYMPTOTIC EFFICIENCY 

To measure the asymptotic efficiency loss from including the location parame- 
ter if the symmetry condition holds, we compare the asymptotic variance of a 
QMLE obtained by maximizing LT(0) with lt(6) from (1.2) with the asymptotic 
variance of r (recall r is a QMLE obtained by maximizing LT( 6) with lt( 6) 
from (1.4)). For such a comparison to be sensible both estimators must be 
consistent, so we assume that the symmetry condition holds. To simplify our 
results we also assume that the innovation density is correctly specified, so it is 
easier to understand the effect of including a. Under suitable conditions, 
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(o- 6) >d N(O, H- 1H- 1), where H is the limit quantity for the second 
derivative of the average log-likelihood and X is the covariance matrix from the 
limit distribution of the first derivative of the average log-likelihood. In particu- 
lar, correct specification of the innovation density implies that H- -L2 (the 
information matrix equality holds), so the asymptotic variance of a QMLE is 
L-1 with Y= Var(dlt(6)/do). 

To derive a formula for the asymptotic efficiency loss from including a if the 
symmetry condition holds, let V be the asymptotic variance of a QMLE of ry in 
the case where a is not estimated. Let VJ' be the asymptotic variance of a 
QMLE of ry in the case where a is estimated. Let s(u) = g(u, V -ldg(u, r)/du, 
r(u) = 1 + s(u)u, ht = ht(yo), At =_-h 1h(y)/8y, Bt -hT 1W- ldft((yo)/dy, 
and Ut = (uout + ao - -a)/a-. Let B = E[Bt] and J = E[s(ut)2]. 

THEOREM 3: The asymptotic efficiency loss from including the location parame- 
ter, a, is 

VJ -V= VBB'V/(J-1 B'VB). 

PROOF: See Appendix B. 

The difference of the asymptotic variance matrices for a QMLE of ry if a is 
included and if a is excluded is a rank one matrix, which tends to be smaller if 
B is closer to zero. 

Perhaps the most frequency constructed QMLE is based on an assumed 
Gaussian innovation density for a GARCH specification. For a GARCH speci- 
fication, the asymptotic variance of a Gaussian QMLE under incorrect density 
specification is also quite simple. Engle and Gonzalez-Rivera (1991) show that 
for a Gaussian QMLE with a GARCH specification V = H- 1H-1 with H = 

(2/( K - 1)) , where K is the kurtosis of the true innovation density. Therefore, 
the difference of the asymptotic variance matrices of a misspecified Gaussian 
QMLE for a GARCH model if a is included and if a is excluded is the rank 
one matrix 

( 4 ) Y-1BB 1 L-1/ J-1 _B' 4 K 
- 

'B_ - 

There is one important case where there is no asymptotic efficiency loss for 
estimation of a subset of the parameters of y. Suppose that ry is partitioned as 
ry= (p ', 4')', and that ft(y) =ft( 3) depends only on /, so that 4 are parame- 
ters of the conditional variance. (An example is the ARCH model introduced in 
Section 1.) Suppose also that 

(3.1) Cov(h-8ldht(-yo)/8d,, hT-8ldht(yo)/8do) = 0. 
Condition (3.1) is equivalent to block diagonality of the information matrix 
between /3 and 4, because E[ B B'] is block diagonal by the assumption that 4 
does not appear in ft( 3). 
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COROLLARY: If ff(-y) =f( (3) depends only on /3, and Cov(hT1dh,(yO)//d3, 
h 1-dht(-yo)/do) = 0, then there is no asymptotic efficiency loss for a QMLE of 4 
from including the location parameter, a. 

PROOF: The block diagonality holds for both the case where a is estimated 
and where a is not estimated. Furthermore, the block of the information matrix 
corresponding to 4 is not affected by the addition of a, so that the asymptotic 
variance of 4 remains the same whether a is included or not. Thus, if (3.1) 
holds, inclusion of a has no effect on the asymptotic variance of 4. Q.E.D. 

As is well known (3.1) holds for ARCH and GARCH models (for example, 
Theorem 4 of Engle (1982) for ARCH models). For the exponential-GARCH 
model (3.1) does not hold, so the asymptotic efficiency loss from including a is 
given in Theorem 3. 

4. INCONSISTENCY WITHOUT A LOCATION PARAMETER 

It is straightforward to show that if a location parameter is not included and 
E[Bt] 0 0, then there are distributions for which a QMLE of ry is inconsistent. 
For simplicity, we focus on the case where the assumed innovation density is 
symmetric, so we use the calculations from Section 3. Also, we consider a 
location shift of the assumed innovation density, obtained by varying a away 
from zero. Let EJ .] denote expectation if the true model is that given in (1.3) 
with ao = a and the other parameters equal to their true values, and let lt(0) be 
the conditional log-likelihood (1.2) where a is excluded. 

THEOREM 4: If the symmetry condition holds and y( a) is twice differentiable in 
a and satisfies the theorem of the maximum, then 

dy(a)/ld al O = V-1E[S,s(u)/oo] = 1-V-1E[Bt]E[s(ut)2 

PROOF: See Appendix B. 

Therefore, if E[Bt] 0 0 then dy(a)/da I,,= o 0 0, implying that a small enough 
change of a away from zero changes y. Because -y(O) = yo, this means that for a 
small enough value of a, a QMLE constructed from (1.2) does not satisfy the 
identification condition. Thus if E[Bt] 0 0, then for any innovation density that 
is unimodal and symmetric around zero there is another density, consisting of a 
location shift of the original innovation density (note that the location shift 
creates a density that is not symmetric around zero), for which a QMLE 
constructed from (1.2) is inconsistent. 
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5. CONCLUSION 

Consistency of a QMLE for the parameters of interest requires that the 
expected quasi-log likelihood have a unique maximum at the true value of the 
parameters of interest. We show that this identification condition holds for a 
non-Gaussian QMLE of relative scale parameters if either: (i) the conditional 
mean is identically zero; or (ii) both the assumed and the true innovation 
densities are symmetric around zero. We also show that if the conditional mean 
is not identically zero and the innovation density is asymmetric, then an 
additional parameter is needed to ensure that the identification condition holds. 
The additional parameter accounts for the location of the innovation density. 
These results may help clarify the consistency properties of QMLE's for ARCH 
models, as well as providing an approach to obtaining consistency under 
asymmetry. In future work, it would be interesting to explore the practical 
implications of these results, such as the degree of inconsistency arising from 
asymmetry. 
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APPENDIX A 

In this appendix we give an identification result that is used to prove Theorem 2. 

LEMMA A: If u has density k(u) that is an even function with k(u) 2 k(u + v) for all u, v 2 0, and 
p(u) is an even function with f p(u + a)k(u)dy < x for all a and p(u) > p(u + v) for all u ? 0, v > 0, 
then f p(u + a)k(u)du has a unique maximum at a = 0. 

PROOF: Note that fp(u - a)k(u)du = f p(-t - a)k(-t)dt = f p(u + a)k(u)du by the change of 
variables t = - u and by symmetry (i.e. p(u) and k(u) even functions), so that it suffices to show that 
0 < f p(u)k(u)du - f p(u + a)k(u)du = f [ p(u) - p(u + a)]k(u)du for any positive a. Note that 

(A.1) J [ p(u) - p(u + a)]k(u)du 

_ f p(u) - p(u - a)]k(u)du 
0 

= [ p(u + a) - p(u)]k(u + a)du + I p(u) - p(u - a)]k(u)du. 

Also 

f [ p(u) - p(u - )]k(u)du f 
o 

[p(u + a) - p(u)]k(u + a)du 
a/2 -a/2 

f a/2[ p(-U + at) - p(-u)]k(-u + *x)du 
0 

0/2 [ p(u - a) - p(u)]k(u - a)du. 
0 
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Note that 0 < u < a/2 implies a - u 2 u, so that p(u - a) = p(a - u) < p(u), and similarly, 

k(u - a) < k(u), implying [ p(u) - p(u - a)][k(u) - k(u - a)] 2 0. Therefore, 

[ p(u) - p(u - a)]k(u)du 
0 

= / [ p(u) - p(u - a)]k(u)du 
+ f [ p(u) - p(u - a)]k(u)du 

o a/2 

a/2 [ p(u) - p(u - a)][k(u) - k(u - a)]du 2 0. 
0 

Then by (A.1) it follows that 

f [ p(u) - p(u + a)]k(u)du 

= f [p(u) - p(u + a)]k(u)du + 0 [ p(u) - p(u + a)]k(u)du 

> [p(u) - p(u + a)][k(u) - k(u + a)]du ? 0, 

where the last inequality follows by p(u) > p(u + a) for all u 2 0 and by k(u) > k(u + a) on a 
subset of [0, oo) with positive Legesgue measure. Q.E.D. 

APPENDIX B 

PROOF OF THEOREM 1: Consider first the case in which Assumption 2.3 (symmetry) holds. Let 
6= (Y%, r, ') for cr and ij from Assumption 2.4. By assumption 2.3, Q(cr,q) has a unique 
maximum at a, 71. It also follows by Lemma A, which is proven in Appendix A, that for any iq, 
positive scalar s, and any a = 0, E[ln g(su, + a, 71)] < E[ln g(su,, q)]. Therefore, it follows that 

EJ[l(O)] < - ln o- ln h,(y) + E[ln g(o0h(oy0)u,/oh,(y), q)] 

= Q(oht(y)/ht(yo) , ) - ln ht(yo) < Q(0 ,i1) - ln ht(yo) = Ejlt(H)], 

where Ej*] is the conditional expectation given {z,-s}st= 1, the first inequality is strict if ft(y) =Af(yo), 
and the second inequality is strict if ouht(y)/ht(yo) 0 5f or q = . Therefore, Et[lt(O)] < Et[lt()], 
with strict inequality if fECy) #f,(yo), or uh,(y)/h,(yo) = U, or q 0 . By Assumption 2.2, if y = yo 
then one of ft(y) Aft(yo) and oht(y)/ht(y0) :# 5 has positive probability, implying Et[lt(H)] < 

Et[l,(0)] with positive probability. Therefore, by iterated expectations, 13(o)=E[Ej[l,(0)]] < 

E[Et[l1(0)]] =L0). Furthermore, if y= yo but 0 6, then it follows by Assumption 2.3 that 

E,[l,(O)] = Q(1, 7 - ln ht(yo) < Q(3, -) - ln ht(yo) = Et[lt()], so again L(H) <L(0) by iterated 
expectations. 

Consider next the case in which ft(yo) = 0. Similarly to the previous proof, for 0 = (y, a, 
and Q(o,wiq) = - ln u- + E[ln g(aouto/o, wr)], Et[lt(0)] = Q(oht(y)/ht(yo),vq) - ln ht(yo) < Q(G-71) 
with strict inequality if ouht(y)/ht(yo) = 53 or ij # 4, so the conclusion follows from Assumption 2.4 
and the hypothesis that ht(y)/ht(yo) is not constant if y 0 yo. Q.E.D. 

PROOF OF THEOREM 2: By Assumption 2.6, Q(a, a, r) has a unique maximum at a, , Let 
=(y, a, (r, -71). It then follows that 

Et[lt(H)] = Q(a0 - ht(yo) I{ft(y) -ft(yo) + aht(y)}, uht(y)/ht(yo), r)) - ln ht(yo) 

Q(ii, :-) 
-\ 

In hty_ =_ Ejlrt(t) 
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with strict inequality if ouht(y)/h,(yo) A U, or a0 - h,(y0)-'{jf(y) -f,(yo) + ah,(y)} 
5 
a, or q +. 

By Assumption 2.5, if y A yo, then either o-h,(y)/ht(y0) 0 53 with positive probability or 
o-ht(y)/ht(yo) = Jr with probability one and [ft(y) -ft(y0)]/ht(y0) # a - ao + a(U/uf) with posi- 
tive probability, implying that the above inequality holds with positive probability, and hence 
L(0) < L(H). Also, if y = yo, but 0 # 0, then L(0) < L(0) also holds by Assumption 2.6. Q.E.D. 

PROOF OF THEOREM 3: By standard matrix results the asymptotic variance of a QMLE of y is the 
inverse second moment matrix of the residuals from the population regression of dit(a)/dy on the 
other elements of dlt(O)7d8. To calculate the least-squares residual, note that correct specification 
implies that v= o-r, 71 = 710, and -a = a0 = 0, so that Ut = ut. Also, by symmetry, s(ut) is an odd 

function of u and r(ut) and dlt(00)/ld7 are even functions of u, implying orthogonality of s(ut) and 
(r(ut), d1t(00)/d8q). Furthermore, ut is independent of (At, B). Then, in the case where a is not 
estimated, so that - o-ls(ut) is not included among the elements of d1t(00)/d0, the asymptotic 
variance of a QMLE of y is 

V= (E[S S;]) 1 = {Var(At)E[r(u,)2] +E[B B']E[s(ut)2]} 

where St = (At - E[At])r(ut) + Bts(ut). Here St is the population residual from the regression of 

dlt(00)ldy on the other elements of the score. If a is also estimated, the asymptotic variance is 

V, = (E[SfaSa,]Y1 = {Var(At)E[r(u,)2] + Var(Bt)E[s(ut)2]} 

S= (A -E[At])r(ut) + (Bt-E[BtBDs(ut). 

The form of the asymptotic variance matrices follows from the form of the efficiency bound for 
semiparametric estimators of y in (1.3) that is given in Steigerwald (1994). The partitioned inverse 
formula implies that 

Va - V = VBB'V/(J- -B'VB). Q.E.D. 

PROOF OF THEOREM 4: A QMLE constructued from (1.2) converges in probability to the 
maximizer y(a) of Ejy[lt(0)]. Thus if a is assumed to equal zero when the true innovation density is 
asymmetric, y(a) is the limit of a QMLE constructed from (1.2). Then by the theorem of the 
maximum (or the implicit function theorem applied to the first order conditions for y) and by the 
information matrix equality, it follows that 

dy(a)/da d a= = V-1E[Sts(ut)/]o- = o1V-1E[Bt]E[s(ut)2]. 
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